首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   3篇
安全科学   1篇
综合类   3篇
  2016年   1篇
  2013年   2篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
This paper discusses 2 heuristic job rotation procedures for preventing industrial workers from being excessively exposed to ergonomics and safety hazards in their workplaces. The objective of the procedures is 2-fold: (a) to find a minimum number of workers required for the given set of jobs, and (b) to determine a set of safe worker-job-period assignments such that all workers' exposure to hazard does not exceed the permissible limit. Here, occupational hazards are divided into 2 categories: single- and variable-limit hazards. In the first category, workers are considered to have equal capability to withstand the hazard; in the second category, the limit of hazard exposure varies for different individuals. Numerical examples are presented to demonstrate the procedures.  相似文献   
2.
Nitrite accumulation in shrimp ponds can pose serious adverse effects to shrimp production and the environment.This study aims to develop an effective process for the enrichment of ready-to-use nitrite-oxidizing bacteria(NOB)inocula that would be appropriate for nitrite removal in brackish shrimp ponds.To achieve this objective,the effects of nitrite concentrations on NOB communities and nitrite oxidation kinetics in a brackish environment were investigated.Moving-bed biofilm sequencing batch reactors and continuous moving-bed biofilm reactors were used for the enrichment of NOB at various nitrite concentrations,using sediment from brackish shrimp ponds as seed inoculum.The results from NOB population analysis with quantitative polymerase chain reaction(q PCR)show that only Nitrospira were detected in the sediment from the shrimp ponds.After the enrichment,both Nitrospira and Nitrobacter coexisted in the reactors controlling effluent nitrite at 0.1 and 0.5 mg-NO_2~--N/L.On the other hand,in the reactors controlling effluent nitrite at 3,20,and 100 mg-NO_2~--N/L,Nitrobacter outcompeted Nitrospira in many orders of magnitude.The half saturation coefficients(Ks)for nitrite oxidation of the enrichments at low nitrite concentrations(0.1 and 0.5 mg-NO_2~--N/L)were in the range of 0.71–0.98 mg-NO_2~--N/L.In contrast,the Ksvalues of NOB enriched at high nitrite concentrations(3,20,and 100 mg-NO_2~--N/L)were much higher(8.36–12.20 mg-NO_2~--N/L).The results suggest that the selection of nitrite concentrations for the enrichment of NOB inocula can significantly influence NOB populations and kinetics,which could affect the effectiveness of their applications in brackish shrimp ponds.  相似文献   
3.
A bottom substrate denitrification tank for a recirculating aquaculture system was developed. The laboratory scale denitrification tank was an 8 L tank (0.04 m2 tank surface area), packed to a depth of 5 cm with a bottom substrate for natural denitrifying bacteria. An aquarium pump was used for gentle water mixing in the tank; the dissolved oxygen in the water was maintained in aerobic conditions (e.g. > 2 mg/L) while anoxic conditions predominated only at the bottom substrate layer. The results showed that, among the four substrates tested (soil, sand, pumice stone and vermiculite), pumice was the most preferable material. Comparing carbon supplementation using methanol and molasses, methanol was chosen as the carbon source because it provided a higher denitrification rate than molasses. When methanol was applied at the optimal COD:N ratio of 5:1, a nitrate removal rate of 4591 ± 133 mg-N/m2 tank bottom area/day was achieved. Finally, nitrate removal using an 80 L denitrification tank was evaluated with a 610 L recirculating tilapia culture system. Nitrate treatment was performed by batch transferring high nitrate water from the nitrification tank into the denitrification tank and mixing with methanol at a COD:N ratio of 5:1. The results from five batches of nitrate treatment revealed that nitrate was successfully removed from water without the accumulation of nitrite and ammonia. The average nitrate removal efficiency was 85.17% and the average denitrification rate of the denitrification tank was 6311 ± 945 mg-N/m2 tank bottom area/day or 126 ± 18 mg-N/L of pumice packing volume/day.  相似文献   
4.
The effects of chitosan characteristics including the degree of deacetylation, molecular weight, particle size, pH pretreatment and immobilization time on the immobilization of nitrite-oxidizing bacteria (NOB) on biopolymeric chitosan were investigated. Nitrite removal efficiency of immobilized NOB depended on the degree of deacetylation, particle size, pH pretreatment on the surface of chitosan and immobilization time. Scanning electron microscope characterization illustrated that the number of NOB cells attached to the surface of chitosan increased with an increment of immobilization time. The optimal condition for NOB immobilization on chitosan was achieved during a 24-hr immobilization period using chitosan with the degree of deacetylation larger than 80% and various particle size ranges between 1-5 mm at pH 6.5. In general, the NOB immobilized on chitosan flakes has a high potential to remove excess nitrite from wastewater and aquaculture systems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号